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Abstract—This paper presents an application of the spline strip method to analyse buckling of
rectangular Mindlin plates with linearly tapered thickness in one direction, considering the transverse
shear effects and the curvature terms appearing in the expression for loss of potential energy of the
applied membrane stresses.

To demonstrate the convergence and accuracy of the present method, several examples are
solved, and results are compared with those obtained by an analytical method and by other
numerical methods. Stable convergence and excellent accuracy are obtained using the higher order
spline strip models.

Buckling load parameters of rectangular thick plates due to uniform in-plane loads with some
boundary conditions are analysed by varying plate-aspect ratios, thickness ratios and tapered ratios.

1. INTRODUCTION

Extensive analyses for elastic stability of rectangular plates of both constant thickness and
variable thickness on the basis of the classical plate theory have been carried out using the
exact method and numerical methods, and a considerable amount of information on the
buckling load parameters for different boundary conditions and in-plane loadings is avail-
able in the literature (Timoshenko and Gere, 1961 ; Bulson, 1970 ; Kobayashi and Sonoda,
1990, 1991). On the other hand, elastic buckling of moderately thick plates based on the
Mindlin—Reissner plate theory in which account is taken of the effect of transverse shear
deformation, is not so extensive (Leissa, 1982). Srinivas and Rao (1969) presented an exact
three-dimensional elastic analysis for the stability of thick simply-supported rectangular
plates. Brunelle (1971) analysed the elastic buckling of transversely isotropic Mindlin plates
with two parallel edges simply supported and the remaining two edges subjected to a
variety of boundary conditions. Brunelle and Robertson (1974) have derived the governing
equations of a transversely isotropic, initially stressed Mindlin plate, and solved the thick
plate equations for simply-supported rectangular plates in a state of uniform compressive
stress plus a uniform bending stress both acting in the same direction. Rao et al. (1975)
analysed the stability of moderately thick rectangular plates by a triangular finite element.
Luo (1982) presented the finite element analysis for the buckling of thin and moderately
thick plates by means of a modified complementary energy principle, and showed the
simplicity and reliability of the method. Sakiyama and Matsuda (1987) analysed the elastic
buckling of rectangular Mindlin plates with mixed boundary conditions using the integral
equations combined with the numerical integration technique.

However, these studies based on the finite element method and other numerical
methods have ignored the “curvature terms” appearing in the expression for loss of potential
energy of the applied membrane stresses. Benson and Hinton (1976) and Hinton (1978)
have considered the buckling of Mindlin plates with one pair of opposite edges simply
supported using the finite strip method including the presence of the curvature terms or
second order strains in the potential energy due to in-plane stresses. Dawe and Roufaeil
(1982) analysed the elastic buckling of rectangular Mindlin plates with arbitrary boundary
conditions using the Rayleigh—Ritz method and the finite strip method. However, to the
author’s knowledge, the elastic buckling of rectangular Mindlin plates with varying thick-
ness has not been investigated.
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1664 T. Mizusawa

In this paper, spline strip models based on the Mindlin plate theory are used to analyse
the buckling of rectangular plates with linearly varying thicknesses, with two parallel edges
simply supported and the remaining two edges subjected to a variety of boundary conditions.

To demonstrate the convergence and accuracy of the present method, several examples
are solved, and results are compared with those obtained by other numerical methods.
Stable convergence and excellent accuracy are obtained using higher order spline strip
models. Buckling load parameters of rectangular Mindlin plates with several boundary
conditions are analysed by varying aspect ratios, thickness ratios and tapered ratios, and
presented in tabular form.

2. SPLINE STRIP METHOD

The solution procedure of the buckling of rectangular Mindlin plates with linearly
tapered thickness is based on the spline strip method presented by Mizusawa (1988, 1989),
which can be regarded as an alternative form of the thick finite strip method described by
Dawe et al. (1982).

The plate is idealized by discrete strip elements as shown in Fig. 1.

It is convenient to introduce the non-dimensional coordinate systems

E=xja, w=yb, W =W/b, (1

in which a and b are length and width of the plate, respectively.

The displacement functions of the two rotations and deflection (0. 0,, W) in a strip
element are expressed by the product of the basic function series in the longitudinal direction
and the B-spline functions which are known as piecewise polynomials in the other direction :
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Fig. 1. Rectangular Mindlin plate and coordinate systems.
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where
[N] = [N1x(m), Nos(n)s - . ., Nipse(m)] 3
and
83m={AimAom---Apm}’s {08}m = {BinBom---Bym}",
{8ctm = {C1mCom- - Ciym}"s “@

in which i, = k+M,—1, and ¥, (&) and Y,,(£) are the basic functions satisfying the end
conditions in the n-direction. N, ;() is the normalized B-spline function, k—1 is the degree
of the B-spline function, M, is the number of strip elements.

Equation (2) can be expressed in matrix form as follows:

{Z} = [S]n{A}m (5)
where
{Z} = {GX,Oy, W'}T’ {A},,, = {{5A}m{5a}m{5c}m}T )
and
, [NIZ.) 0 0
[S]. = Zl 0 [N1Y..() 0 . )
" 0 0 [N1Y..(5)

The {A},, are unknown parameters which can be determined by the minimum total potential
energy theorem.

In Mindlin—Reissner plate theory, the generalized strains comprise the curvature
changes (ey, ¢y, £xy) and the shear strains (yy, yyz) which are defined as follows :

(1/a) 86x/0¢
{e}» = (1/b) 36y/0n , @®)
(1/b) 86x/on+(1/a) 860y/0&

(e}, = {0X+ (b/a) oW’ /ac}. o)

0,+3W’ oy

Substituting eqns (2) into eqns (8) and (9), and peforming the differentiations, the
strain vector {y} is found to be

= {g} = [TH{Z} = [T)(S} {A} = [B]{A}. (10)

The differential matrix operator [T] and the strain matrix [B],, of a strip element are
defined as follows :

" (1/a) /¢ 0 0
0 (1/b) 8/0n 0
(TI= | (1/b)d/on (1/a)0/0& 0 (11)
1 0 (1/a) /¢
L 0 1 (1/b) o/on |

and
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(B, = [T][S]..

" (1/a)[N]¥,,(8) 0 0 7
,_ 0 (1/B)[N]Y,, (&) 0
=Y [ (I/HNTY, (&) (Ha)NIY,(&) 0
LINITL©) 0 (b/@)INT Y, ()
.0 [N1Y,.(¢) [N]Y,.(&)
-2 [or) i

where ¥,,(¢) = 87,,(£)/3¢, Y,.(8) = 2Y,,(8)/2¢ and [N] = d[N]/én.
The thickness of the plate varies in the y-direction in linear fashion as

1) = hy(on+1), (13)
where & is a tapered ratio expressed by (4, —hy)/h,, and kg and h, denote the thickness at

the sides of # = 0 and 5 = 1, respectively.
For an isotropic material, the matrices of flexural and shear rigidities are written as

I v 0
D], = Doon+17% v 1 0 | (14)
0 0 (1—-v)2
10
[D},.:Eh(,(511+1)rc/2(]+v)[0 1], (15)

in which Dy = EA3/12(1 —v?). E is Young’s modulus, v is Poisson’s ratio and k = 7%/12 is
a coefficient to take into account the warping of the section.

The strain energy due to bending and transverse shear deformation, U of the isotropic
rectangular Mindlin plate is given in dimensionless coordinate systems (&, 7, W) as follows :

[ i
U= f j [} TIDT e} + (&} ID1. {e}.] 4 di

= (Do/2)(afb) L ﬁ (On+1)°+ {(b/a)*(80,/08)*+ (86 /on)*

+2v(b/a) (08 /0E)(00y/On)

+0.5(1 —v){(00y/0n) + (b/a)(86,/0) }

+6(1=v)k(b/ho)* (0n+1) *[{(B/a)@W' [08) +0,}*

+ {(@W Jon) + 6,171} d¢ dn, (16)
and the strain energy accounting for the second order strain of a tapered plate due to an

in-plane compressive load, N, and to arbitrarily distributing the compressive load, .., V/ is
also written as

1 i
V= (ab/Z}J f [N (GW [on)*
0 4

+ (/12N (ho/b)*(On+1)*{(20,/0n)* + (26, /0m)*}
F N =D+ 1}(b/a)* (dn+ )W’ [08)?
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+ /12Ny~ 1) + 1} (b/a)* (ho/b)* (3n+1)*{06,/68)*
+(26,/0)*}1 d¢ dn, (17)

where N? = o,ho and N, = 0,h,(dn+1), { is a distributing factor of the compressive stress,
o, in the n-direction (see Fig. 1) and o, and g, are compressive stresses.

To deal with arbitrary boundary conditions along two opposite edges (n = 0 and
n = 1), the method of artificial springs is used. According to this method, three types of
springs, «, ff and y, corresponding to deflection and the two rotations, 8 and 8, respectively,
are introduced at each edge of the plate. The energy contribution due to these springs is
added to eqn (16) to form the total potential energy for the entire system. The energy
contribution, Ub due to these springs is given by

1
Ub=f {(ab* W2 + B3 + 90|, o+ (ab> W2 + BO% +907),= 1 } AE. (18)
0

The functional of the plate, I, is expressed as follows :
=v+Ub-V. (19)

By substituting eqns (2) into eqn (19) and using the principle of minimum potential energy,
the coefficients {A} are determined as follows:

oT1/o{A}, = 0, (20)

which may be expressed in matrix form as

r r

m=1s=1

Here n* is a buckling load parameter which may be expressed by N,a?/Dyn’ or 6,hob%/Don>.
The matrices of [K],,, and [G],, are given by

[K0.0.] [K0.0,] [KO. W]
[Kl.. = Do*(a/b)| [K8,0,] [KO,0,] [KO,W'] (22)
[KW’6,] [KW’'6,] [KW' W']dms

and

[G6.0,] 0
[Gl = ab [G6,6,] . (23)
0 [GW’ W] dms

In eqns (22) and (23), the submatrices of [K,] and [G,] are defined in the Appendix. The
order of these submatrices is expressed by 3r(k+ M, —1), where k—1 is the degree of the
B-spline functions and M, is the number of strips.

‘ Ig the two opposite edges are simply supported, the basic functions in eqns (2) can be
given by

Y,.(&) = cos (mné), Y,(&) =sin(mnl); (m=12,...,r). 29)

Their properties of orthogonality result in matrices which have no coupling between
the different terms and therefore a term by term analysis involving only small matrices can
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be carried out. Thus, the solution of the Mindlin plate with the two opposite edges simply
supported is obtained by

m=1.2.....r

({Kuq}mm {A}m - n*{(;nq}mm iA} m) == f(}} . (25}

mg=12.... i

A family of strip models can be generated, corresponding to different degrees of B-
spline interpolation across a strip. To perform the integrations required in determining
[K,,] and [G, ], analytical (full) integration is always used.

3. NUMERICAL EXAMPLES AND DISCUSSIONS

The buckling of isotropic rectangular Mindlin plates with linearly tapered thickness in
one direction subjected to in-plane compressive loads is solved to illustrate the convergence
and accuracy of the present method. The two opposite edges parallel to the y-direction are
simply supported and the other two edges may be arbitrary boundary conditions.

For the definition of the boundary conditions along the edges, the symbolism SS-CF,
for example, identifies a rectangular plate with theedges ¢ = 0. & = 1, # = 0, = 1 having
simply-supported, simply-supported, clamped and free boundary conditions, respectively.
Buckling mode shapes are described in the form (i, /) where { and j are the numbers of half
waves in the &~ and g-directions, respectively. The value of the shear factor, «, 15 assumed
to be n7/12.

Table 1 shows the effect of the degrees of B-spline functions, £ — 1 and the numbers of
strips, M, on the buckling load parameter, n* = ¢ A,b*/(Dyn?) of square Mindlin plates
with tapered thickness {6 = 1.0) subjected to the uniform compressive load, o,. The ratio
of bk, varies from 10 to 1000. The number of strips, M,, of 4, 8 and 12 is used. The
degree of B-spline functions, & — 1, in a strip element degenerates cubic, quartic and quintic
interpolation.

Good convergence is obtained with an increase in the number of strips and in the
degreee of the B-spline functions. The high-order strip model is shown to be rapidly
convergent. In view of this study, we restrict ourselves here to use of the quintic B-spline
functions (k — 1 = 5) in order to obtain more accurate upper bound solutions of rctangular
Mindlin plates with tapered thickness in one direction having one pair of opposite edges
simply supported.

The comparison study on the buckling load parameter, n* = N« /(D,n°) for thin

Table 1. Convergence study of buckling load parameter, #* = ¢ f1,b°/Dyn’. for

square plates {SS-CC) with linearly varying thickness in the y-direction subjected

to the uniform compressive load, o, : bfa = 1.0.v = 0.3, 8 = (h,—hy)h, = L0 and
=

by,

SS-CC SS-CF

k-1 M 1000 100 10 1000 100 10
4 37.050 17.375 10945 49416 42468  3.5713
3 817739 16274 10.922 42809 41690 3.5673
1216630 16213 10921 4.1970  4.1638  3.3674
4 17.549 16320 10.924 42377 42213 3.5679
4 8 16.363 16206 10.921 41790 4.1637  3.5674
12 16298 16204 10921 41764  4.1617  3.5674
4 16442 16210 10922 41813 4.1656  3.5675
5 8 16.2904 16204 10921 41762 4.1623  3.5674
12 16292 16204 10921 41761 4.1607  3.5674
[emy D 2. (L) (LD (. h

(i, /)i, j are the number of half waves in the ¢ and #-directions, respectively.
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Table 2. Comparison of buckling load parameter, n* = N,a*/Dqn? for thin
rectangular plates with tapered thickness in the #-direction subjected to the in-
plane compressive load, N, : b/hy = 1000, k—1 =5, M,=12and v = 1/3

hylho
Boundary
condition  a/b 0.0 0.5 1.0 2.0
0.5 6.2500 11.650 18.438 36.016
(6.2500) (11.650) (18.439) (36.017)
SS-SS 1.0 4.0000 7.1050 10.463 18.198
(4.0000) (7.1051) (10.464) (18.198)
2.0 4.0000 5.9528 7.5478 10.892
(4.0000) (5.9527) (7.5471) (10.892)
0.5 18.187 33.638 52472 99.427
(18.187) (33.638) (52.472) (99.404)
SS-CC 1.0 6.7432 12.314 18.790 34.157
(6.7432) (12.313) (18.789) (34.139)
2.0 4.8471 8.1637 11.298 17.722

(4.8471) (8.1613)  (11.284) (17.844)

( ) is the result calculated by Kobayashi and Sonoda (1991).

rectangular plates (b/h, = 1000, v = 1/3) with tapered thickness in the y-direction subjected
to the in-plane compressive load, N, in the #-direction is shown in Table 2. The strip model
withk—1 = 5and M, = 12is used in the calculation. The tapered ratio of 4,/h, varies from
0.0 to 2.0, and the aspect ratios, a/b of 0.5, 1.0 and 2.0 are used. The results are compared
with those obtained by Kobayashi and Sonoda (1991) using the power series method. It is
found that good agreement is obtained for both uniform and tapered thickness plates. The
high-order strip model combined with the exact integration scheme is also efficient for the
analysis of both thin and thick plates.

Table 3 shows the comparison of buckling load parameters, n* = 6,h¢b*/(Don*) of
square Mindlin plates with uniform thickness subjected to the uniform compressive load,
g,. The ratios of b/h, vary from 5 to 1000. The effect of curvature terms appearing in the
expression for loss of potential energy of the applied membrane stresses on the buckling

Table 3. Comparison of buckling load parameter, n* = 6,h,b%/Dyn?, for square Mindlin plates with uniform
thickness subjected to the uniform compressive load, 6,: b/fa = 1.0, k—1 =5 M, = 12,6 =0.0,v=03and{ =1

3D elasticity Ritz Thin plate
solutions method solutions
Boundary Present Present (Srinivas (Dawe et al., (Timoshenko
conditions b/h, method(I) method(I)  er al., 1969) 1982) FSM et al, 1961)
1000 4.000 4.000 4.000 4.000 4.000 4.000
100 3.997 3.998 3.997 4.000
SS-SS 20 3.928 3.944 3911 3.929 3.929 4.000
10 3.729 3.784 3.741 3.731 3.732 4.000
20/3 3.444 e — 3.449 3.449 4.000
5 3.119 3.256 3.150 3.125 3.126 4.000
1000 7.692 7.692 7.690
100 7.671 7.675 7.673 7.671 7.690
} 20 7.228 7.299 7.690
$8-CC 10 6178 6.370 6.198 6.178 7.690
20/3 5.040 — 7.690
5 4.056 4.320 7.690
1000 1.652 1.652
100 1.650 1.650
20 1.615 1.620
§8-CF 10 1539 1,556
20/3 1.438 —
5 1.323 1.370

Method(l) considers the second order strain and method(II) neglects the second order strain.
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load parameters is also shown. The present results are compared with those calculated by
the Ritz method (Dawe et al., 1982), the finite strip method (Dawe et al., 1982), the three-
dimensional elasticity solution (Srinivas er al., 1969) and the thin plate theory (Timoshenko
et al., 1961). Tt is found that the present method(I) considering the curvature term shows
good agreement with the three-dimensional elasticity solutions and with other numerical
results for both thin and thick plates. The Mindlin plate theory results compare closely with
the results of three-dimensional elasticity theory whilst the results of classical plate theory
are in significant error for other than very thin plates.

Tables 4, 5 and 6 show the buckling load parameters, n* = N a’/(D,n”) for rectangular
Mindlin plates with tapered thickness in the y-direction subjected to the in-plane com-
pressive load, N,. The tapered thickness parameter of J varies from 0.0 to 1.0 and the ratio

Table 4. Buckling load parameters, n* = N a"/D,n", for rectangular Mindlin plates

with tapered thickness in the n-direction subjected to the in-plane compressive load.
Noobia=05k-1=5M =12andrv =03

hih,
Boundary
condition 1 1000 100 S0 20 10 s
0.0 6.250 6.247 6.239 6.179 5977 5.301
0.25 8.775 8.770 8.754 8.649 8.295 7.156
$S-SS 0.5 11606 11.65 11.62 11.45 10.88 9.104
) 0.75 14.89 14.88 14.84 14.57 13.69 1110
1.0 18.47 18.45 18.39 17.99 16.71 13.09
(18.47)
0.0 18.19 18.16 18.08 17.51 15.80 11.56
025 2547 2542 25.27 24.29 21.42 14.86
SS-CC 0.5 33.64 33.56 33.32 31.77 27.35 18.02
~ 0.75  42.66 42.54 42.18 39.85 33.49 20.98
1.0 52.49 52.32 S1.80 48.49 39.75 23.71
(52.49)
0.0 10.39 10.38 10.35 10.16 9.557 7.787
0.25 14.89 14.88 14.83 14.50 13.44 10.53
SS-CS 0.5 20.10 20.07 19.99 19.45 17.76 13.38
0.75 2598 25.94 25.82 24,98 22.45 16.25
1.0 32.54 32.47 32.29 31.07 27.46 19.07
0.0 2.626 2.619 2.604 2.560 2.473 2.262
0.25 4.042 4.025 3.994 3.899 3.723 3.313
SS-CF 0.5 5.909 5.871 5.812 5.639 5.315 4.599
0.75 8.297 8.225 8.125 7.830 7.283 6.123
1.0 14.27 1115 11.00 10.52 9.655 7.884
0.0 2.626 2.619 2.604 2.560 2.473 2.262
0.25 3.457 3.449 3.432 3.376 3.261 2.959
SS—FC 0.5 4.442 4.432 4.413 4.343 4.186 3.759
0.75 5.583 5.572 5.549 5.460 5.247 4.649
1.0 6.884 6.871 6.844 6.730 6.442 5.618
0.0 2.043 2.038 2.028 1.997 1.941 1.807
0.25 3234 3.221 3.199 3.135 3.016 2742
SS-SF 0.5 4.840 4.813 4.772 4.653 4,431 3.929
0.75 6918 6.869 6.801 6.599 6.220 5.377
1.0 9.517 9.438 9.334 9.016 8.412 7.090
0.0 2.043 2.038 2.028 1.997 1.941 1.807
0.25 2,631 2.625 2013 2.577 2.506 2.325
SS-FS 0.5 3.344 3.338 3.324 3.280 3.188 2.941
0.75 4.193 4.186 4.171 4.116 3.994 3.651
1.0 5185 5.177 5.159 5.090 4.927 4.452
0.0 1.582 1.576 1.563 1.527 1.466 [.332
0.25 2.231 2.220 2.201 2.145 2.046 1.831
SS-FF 0.5 2.997 2.980 2.951 2.869 2.721 2.397
0.75 3.890 3.864 3.825 3.709 3.496 3.031
1.0 4917 4.881 4.829 4.670 4.375 3.729

( ) is the result calculated by Kobayashi and Sonoda (1991).



Table 5. Buckling load parameters, n* = N,a’/Dyn?, for rectangular Mindlin plates
with tapered thickness in the #-direction subjected to the in-plane compressive load,
N, bla=10,k—1=5M,=12andv=10.3

Buckling of rectangular Mindlin plates

bihe

Boundary
condition & 1000 100 50 20 10 5
0.0 4000 3997 3988 3928 3729  3.119
025 550 553 5507 5398 5043 3.986
0.5 7110 7101 7074 6891 6305  4.657
S$8S 075 8758 8744 8702 8417  7.531 5225
1.0 1048 1046 1040 9987 8736 5723

(10.48)
00 6743 6731 6696 6462 5765  4.109
025 9407 9386 9324 8916 7750 5194
< 0.5 1232 1228 1218 1154 9750 6112
CC 075 1546 1541 1525 1429 IL73 6867
10 1881 1873 1852 1715 1365  7.479
(18.81)

00 4847 4842 4826 4717 4372 3418
025 7236 7226 719 6992 6365 4749
SS-CS 05 999 9973 9920 9570 852 5945
075 1304 1302 1293 1236 1071 6813
10 1635 1630 1617 1530 1284  7.455
00 2392 2378 2351 2260 2078  1.666
025 4145 4109 4046 3840 3430 2575
SSCF 05 6535 6460 6337 593 5147  3.630
075 9573 9437 9232 8537 7189 4786
10 1319 1298 1267 1158 948 5992
00 2302 2378 2351 2260 2078  1.666
025 2745 2731 2701 2597 2384  1.893
SS—FC 05 3130 3114 3081 2964 2713 2129
075 3551 3534 3498 3364 3069 2374
10 4010 3992 395 3799 3450 2628
0.0 2366 2353 2326 2237 2060 1657
025 4010 3978 3920 3732 3351  2.541
SS-SF 0.5 6036 5980 5889 5568 4899  3.536
075 8161 8094 7982  7.538  6.545  4.547
10 1019 1012 9998 9439 8104 5404
0.0 2366 2353 2326 2237 2060  1.657
025 2738 2723 2693 2591 2379  1.890
SSFS 05 3120 3113 3080 2963 2713 2129
0.75 3551  3.534 3498 3364 3060 2374
10 4010 3991 3951 3798 3449  2.627
0.0 2043 2032 201 1942 1807  1.497
025 2599 25585  2.557 2463 2272 1830
SS-FF 0.5 3037 3022 2990 2878 2641 2087
0.75 3484 3467 3431 3300 3014 2342
10 3958 3939 3809 3747 3405  2.600

( ) is the result calculated by Kobayashi and Sonoda (1991).

1671

of b/h, changes from 5 to 1000. In the case of very thin plates, the results are compared
with those calculated by Kobayashi and Sonoda (1991) using the power series method. Good
agreement is obtained. The results for the thicker plates with the inclusion of transverse shear
effects indicate a smaller buckling load parameter. On the other hand, the effect of the
tapered thickness parameter 4, on the buckling load parameters become larger for the

thinner plates.

Table 7 shows the buckling load parameters, n* = ¢,h,b?/(D,n?) for square Mindlin
plates with tapered thickness in the #-direction subjected to the uniform compressive load,
o.. The tapered thickness parameter of & varies from 0.0 to 1.0 and the ratio of b/h, changes

from 5 to 1000.
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Table 6. Buckli}lg load parameters, #* = N,.a*/Dn°, for rectangular Mindlin plates
with tapered thickness in the y-direction subjected to the in-plane compressive load,
Nyibja=20k—1=5M, =12andv=03

b’h()

Boundary
condition é 1000 100 S0 20 10 5
0.0 4.000 3.988 3.954 3.729 3119 1.754
0.25 5.113 5.094 5.036 4.664 3.675 1.9014
$S.5S 0.5 5.954 5.927 5.847 5.342 4.063 1977
0.75 6.754 6.718 6.615 5.969 4.402 2.033
1.0 7.553 7.508 7.378 6,577 4711 2076
(7.552)
0.0 4.847 4826 4.763 4372 3.418 1.803
0.25 6.568 6.532 6.429 5.797 4.314 2.035
$5-CC 0.5 8.165 §.111 7.961 7.050 4,997 2,127
0.75 9.731 9.652 9.444 8.209 5557 2.168
1.0 11.31 11.20 10,92 9.311 6.039 2186
(11.29)

0.0 4.237 4.222 4.180 3.906 3175 1.766
025 6.273 6.244 6.158 5.621 4.293 2.035
SS-CS 0.5 8.031 7.981 7.840 6.984 4.992 2127
0.75 9.657 9.581 9.380 8.177 5.555 2.168
1.0 11.26 1115 10.88 9.293 6.038 2.186

0.0 2.310 2.283 2.226 2.022 1.637 0.9932
0.25 4.188 4.116 3.982 3.51e 2.671 1.452
§S-CF 0.5 6.818 6.669 6.409 5.497 3.927 1.941
0.75 9.653 9.566 9.324 7.898 5.343 2.168
Lo 11.25 1116 10.88 9.989 6.033 2186

0.0 2.310 2.283 2226 2.022 1.637 0.9925

0.25 2.508 2.478 2.415 2.189 1.758 1.048
SS—FC 0.5 2.704 2672 2.605 2.356 1.878 1102

0.75 2.903 1.869 2.797 2.525 1.999 1.153

1.0 3.108 3.072 2.995 2.699 2.121 1.207
0.0 2.310 2.282 2225 2.022 1.637 0.9923
0.25 4,187 4.116 3.982 3.516 2.671 1.452
SS-SF 0.5 5.954 5.926 5.844 5.316 3915 1.941
0.75 6.751 6.716 6.613 5.968 4.401 2.033
1.0 7.550 7.505 7.375 0.575 4.711 2.076
0.0 2310 2.282 2.225 2022 1.637 0.9925
0.25 2.507 2477 2.415 2,189 1.758 1.048
SS-FS 0.5 2.703 2.671 2.604 2,355 1.878 {.102
0.75 2.903 2.869 2.796 2525 1.999 LS5
1.0 3.108 3.072 2.994 2.698 2121 1.207

0.0 2.260 2.234 2.180 1.987 1.618 0.9886

0.25 2.507 2.477 2414 2.188 1.758 1.048
SS-FF 0.5 2.703 2.671 2.604 2.355 1.878 1.102
0.75 2.503 2.869 2.796 2,525 1.999 155
1.0 3107 3.072 2.994 2.698 2421 1.207

{ ) is the result calculated by Kobayashi and Sonoda {1990).

Tt is seen that the results are dependent on these parameters, and the effects of 6 and
b/h, are similar to those observed in the previous set of problems.

Table § shows the effect of the distribution of the compressive load, o, on the buckling
load parameters, n* = o.h,b*/(Dyn?) of square Mindlin plates with both uniform thickness
(6 = 0) and tapered thickness (8 = 1.0). Three types of compressive loads which are ex-
pressed by { = 1.0, 0.0 and — 1.0 (see Fig. 1) are used. It is found from these tables that
the buckling parameters of the plates are dependent on the thickness ratio, b/h,, and
tapered ratio, 8. The buckling load parameters are also influenced by the distributing para-
meter, {, of the compressive load. The case of { = 1.0 is the most critical one,

Figures 2 and 3 show the buckling load parameters, n* = o hb*/(Dyn?), versus the
plate-aspect ratios of rectangular plates with uniform thickness and tapered thickness,
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Table 7. Buckling load parameters, n* = a,hob?/Don?, for square Mindlin plates with
tapered thickness in the n-direction subjected to the uniform compressive load, o, :

bla=10,v=03,k—1=5M,=12and{ =1

L
Boundary
condition 6 1000 100 50 20 10 5
0.0 4.000 3.997 3.988 3.928 3.729 3.119
0.25 5.048 5.043 5.029 4934 4.624 3.727
§S-SS 0.5 6.191 6.184 6.163 6.019 5.564 4.320
0.75 7.428 7.418 7.387 7.181 6.542 4.893
1.0 8.758 8.744 8.701 8.415 7.549 5.442
0.0 7.691 7.671 7.612 7.228 6.178 4.056
0.25 9.671 9.640 9.547 8.955 7416 4.594
SS-CC 0.5 11.77 11.72 11.58 10.73 8.620 5.069
0.75 13.97 13.91 13.72 12.55 9.789 5.493
1.0 16.29 16.20 15.95 14.40 10.92 5.871
0.0 5.740 5.733 5.713 5.574 5.140 3.876
0.25 7.166 7.155 7.123 6.911 6.261 4.437
SS-CS 0.5 8.695 8.680 8.633 8.325 7.406 4932
0.75 10.33 10.31 10.24 9.811 8.567 5.372
1.0 12.06 12.03 11.94 11.37 9.736 5.765
0.0 1.653 1.650 1.644 1.615 1.539 1.323
0.25 2.178 2.173 2.163 2.116 1.989 1.642
SS-CF 0.5 2.775 2.768 2.752 2.679 2.481 1.967
0.75 3.442 3.431 3.409 3.302 3.010 2.290
1.0 4.176 4.161 4.131 3.978 3.567 2.605
0.0 1.653 1.650 1.644 1.615 1.539 1.323
0.25 2.011 2.007 1.999 1.960 1.854 1.561
SS—FC 0.5 2.412 2.407 2.396 2.344 2.201 1.815
0.75 2.859 2.853 2.839 2.770 2.580 2.082
1.0 3.354 3.347 3.330 3.239 2.992 2.362
0.0 1.402 1.400 1.396 1.378 1.327 1.173
0.25 1.861 1.858 1.851 1.821 1.734 1.478
SS-SF 0.5 2.386 2.381 2.371 2.322 2.184 1.793
0.75 2973 2.967 2952 2.880 2.671 2.109
1.0 3.623 3.614 3.594 3.489 3.189 2.422
0.0 1.402 1.400 1.396 1.378 1.327 1.173
0.25 1.693 1.691 1.685 1.661 1.591 1.383
SS-FS 0.5 2.019 2.016 2.009 1.976 1.883 1.609
0.75 2.381 2.378 2.369 2.326 2.203 1.848
1.0 2.783 2.778 2.768 2.712 2.552 2.099
0.0 0.9523 09516 09500 0.9412 09146 0.8274
0.25 1.203 1.202 1.200 1.186 1.145 1.014
SS-FF 0.5 1.480 1.479 1.475 1.456 1.396 1.209
0.75 1.785 1.784 1.779 1.751 1.667 1.412
1.0 2.120 2.118 2.112 2.074 1.960 1.622

respectively, and are presented graphically for the ratios of b/h, = 1000 and 10. Three
combinations of the boundary conditions at the unloaded edges are considered. It is found
that the values of the buckling load increase with an increase in the tapered ratio, and the
buckling load parameter reduces with an increase in the thickness.

4. CONCLUSIONS

This paper presents an application of the spline strip method to predict the elastic
buckling load of rectangular Mindlin plates with tapered thickness in which account is
taken of the effects of both transverse shear and second strain term. The effects of aspect
ratios, thickness ratios and tapered ratios on the buckling load parameters of rectangular
Mindlin plates subjected to some compressive loads are investigated. The main conclusions
of the present work can be summarized as follows :
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Table 8. The effect of non-uniformity of compressive load on buckling load
parameters, n* = ¢, hqb?/Dyn’, of square Mindlin plates with tapered thickness in
the p-direction: bla = 1.0. v = 0.3

(a) {=1.0

h [ 1y

B.C. é 1060 166 50 20 10 5

SS-SS 1.0 8.758 8.744 8.701 8.415 7.549 5.442
0.0 4.000 3.997 3.988 3.928 3.729 39

$§-CC 1.0 16.29 16.20 15.95 14.40 10.92 5871
0.0 7.691 7.671 7612 7.228 6.178 4.056

SS-CS 1.0 12.06 12.03 11.94 11.37 9.736 5.765
0.0 5.740 5.733 5713 5.574 5140 3.876

S8-CF 1.0 4.176 4.161 4.131 3978 3.567 2,605
0.0 1.653 1.650 1.644 1.615 1.539 1

SS-FC 1.0 3.354 3.347 3.330 3.239 2992 2.362

0.0 1.653 1.650 1.644 1615 [.539 1.323
SS-SF 1.0 3.623 3.614 3.594 3.489 3.189 2422
0.0 1.402 1.400 1.396 1.378 1.327 1173
SS8-FS Lo 2.783 2.778 2.768 2712 2.552 2.099
0.0 1.402 1.400 1.396 1.378 1.327 R
8S-FF 1.0 2.120 2.118 2112 2.074 1.960 1.622

0.0 09523 09516 09500 09412 09146 08274

) (=10

SS-SS 1.0 40.33 40.16 39.68 36.63 28.98 14.47
0.0 2553 25.46 25.26 23.96 20.34 1257

S88-CC 1.0 61.00 60.59 59.38 52.27 3448 15.19
0.0 39.67 39.49 38.96 35.66 27.15 1345

S8-CS 1.0 60.97 60.56 59.35 52.24 34.48 1319
0.0 3967 39.49 38.95 35.66 27.15 1345

SS-CF 140 60.96 60.54 59.34 5223 34.48
0.0 39.66 39.48 38.94 35.65 2715

Lod L
D

Rl
Lo e

SS-FC 1.0 5.386 5.374 5.346 3218 4.880 3990
0.0 2.791 2,785 2771 2718 2.589 2238

SS-SF 1.0 40.32 40.16 39.67 36.62 28.97 14.47

0.0 2552 2546 2526 23.96 20,34 12,57
SS-FS 1.0 4954 4944 4.922 4821 4.553 3.802

.0 2.631 2.625 2.613 2.567 2456 2146
SS-FF 1.0 4.889 4.876 4.850 4.741 4.466 3722

0.0 2.607 2.601 2.589 2.542 2.430 212

(1) High-order spline strip models based on the Mindlin plate theory show the high
efficiency of the rapid convergence and high accuracy of buckling loads for both thin and
thick plates.

(2) The buckling load parameters and buckled mode shapes of the rectangular Mindlin
plates with the tapered thickness are dependent on the thickness ratios, /A, tapered ratios,
8, aspect ratios, b/a, and boundary conditions.

(3) The values of buckling load parameters increase with an increase in the tapered
ratio, and the buckling load reduces with an increase in the thickness.
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Table 8. Continued.

© (=00
b/hgy
B.C. ] 1000 100 50 20 10 5
SS-S8 1.0 16.09 16.07 15.99 15.49 13.95 9.317
0.0 7.812 7.806 7.788 7.666 7.262 6.035
S$S-CC 1.0 27.87 27.72 27.29 24.67 18.71 10.02
0.0 14.71 14.67 14.55 13.77 11.65 7.467
SS-CS 1.0 24.55 24.49 24.30 23.06 18.43 9.966
0.0 12.68 12.67 12.61 12.26 11.17 7.367
SS-CF 1.0 14.89 14.86 14.78 14.23 12.62 8.861
0.0 6.816 6.809 6.788 6.660 6.267 5.136
SS-FC 1.0 4.167 4.158 4.137 4.032 3.748 3.014
0.0 2.100 2.096 2.087 2.050 1.955 1.688
SS-SF 1.0 10.84 10.83 10.79 10.52 9.675 7.399
0.0 47711 4.768 4.759 4.703 4.522 3.939
SS-FS 1.0 3.622 3.615 3.601 3.530 3.331 2.768
0.0 1.870 1.867 1.860 1.833 1.763 1.554
SS-FF 1.0 3.258 3.252 3.240 3.180 3.010 2.523
0.0 1.642 1.640 1.636 1.616 1.562 1.395
20 —
- 3 =0
15— b/hg = 1000
- b/hg = 10
.
n n
10—
sf—
o 1 ! 1
o] 05 1.0 15 20 25 30 35 40
a/b

Fig. 2. Buckling coefficient, n* = g,h,b*/Don® of Mindlin plate with uniform thickness subjected

20 |— 8 =10
- ——-— b/hg = 1000
- N b/hg = 10
1S |— e BT of o
n* |-
10—
I-
5 —
o
0

to the uniform compressive load, o, ; (v = 0.3, § = 0.0).

a/b

Fig. 3. Buckling coefficient, n* = 6,4,b*/Dyn” of Mindlin plate with tapered thickness subjected to
the uniform compressive load, o, ; (v = 0.3, § = 1.0).

SAS 30:12-H
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(4) The loading direction of compressive loads and the increment of boundary restraint
are also the factors of the decrease in the buckling load parameters of the plates. In
particular, the engineer’s conventional intuition as to the effects of boundary restraint in
raising buckling loads must be carefully modified when dealing with transversely isotropic
plates.
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APPENDIX

The sub-matrices in (22) and (23) are given as follows:

[K0.0.] = (bfa) Ing~ A1 +0.5(1 —v) Inq ~A2+6(1 ~v)ic(b/hy) > Tng * 42,
[K0,0,] = (bja)vIng > 43 +0.5(1 —v)(b/a) Ing> 44,
(KO, W] = 6(1 —v)x(bja)(bfhe)? Ing" 44,
[K0,0,] = (bja)vIng" 45 +0.5(1 —v)(b/a) Ing - 46,
(K0,0,] = Ind A7 +0.5(1 —)(bja)* InG> 48 + 6(1 — x(blhy)* Tng > 47,
(K6, W] = 6(1—¥)x(b/ho)* Ing- 47,
[KW"0,] = 6(1—v)(ba) (b/ho)* Ing" 46,
(KW 0,] = 6(1=v)x(b/ho)* Inq" A7,
(KW’ W'Y = 6(1 —v)k(b/a)(b/ho)? Ing 2 48+ 6(1 — )i (b/ho)? Indta7.
and
68,00 = (1/12)(ho/6)*{N, Ing" 42+ (b/a) N Ing ™42},
[G8,8,] = (1/12)(ho/B)*{N, Inq " A7+ (b/a)’ N0 Inq" AT},
[GW’ W] = {N,Inq"47+(bja)>N?Ing" 47}, an

in which the integrals Inq and Ai are given by
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Ing = f {09 N, /on* - O[N], /on'} - (B +1)" dn, (A2)
where s and ¢ are the order of derivatives of [N], and

Al= f ' @Im(©)/150)- @ Fs(8)/2%) de,

A2 = Ll Ym(&)- Ts(&) d¢,

43 = f @Im(©)/0) " Ys(2) ¢,

A4 = j ' Tm(@)- (2Y5()/60) e,

45= j ' Ym(2)- (070109 a&,

A6 = j ' @Ym(©)/00) T dt,

AT = f Ym(@- Y@ de,

A8 = ﬁ BYm(&)/08) - (0Ys(8)/0¢) dE.



